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Abstract

The quest for longevity and healthy life is an essential human need. Cancer intercepts this need

with great interference. Cancer exhibits high heterogeneity in both space and time. Its aggressive

proliferation poses a challenge in searching for a cure for cancer as it is notoriously difficult to

address recurrence, resistance and metastasis. This highlights the urgent demand to understand

cancer better via developing a systematic classification framework.

Cancer subtyping and clustering methods have been studied frequently, while no method we

know of unveils clusters in the Pancancer dataset by alleviating the tissue effect. The autoen-

coder architecture and its variants have the ability to retain tissue effect in the low-dimensional

latent space. In this thesis, we present PCVAE, a modification of the variational autoencoder that

controls the primary tissue effect of the bulk RNA sequencing data. PCVAE offers the ability to

uncover novel connections across heterogeneous cancers in a site-effect-free environment. These

connections can be expressed by identifying new clusters, which encapsulate abundant biological

meaning. PCVAE demonstrates its proficiency in removing the tissue signal and additionally al-

lows for clustering on less dominant features. One of the PCVAE models generates high-quality

clusters compared to others under multiple measures. The survival analysis is performed on the

novel cohorts of patients to provide valuable insights on the possible interpretations in terms of

molecular oncology.
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Mathematical Notation

Symbol Meaning Dimension

M a family of models

D any generic dataset

X input, dataset Rm×n

X sample space in probability theory

xi i-th example in the data Rn

x arbitrary example from the dataset Rn

z example decoded in the latent space Rk

y output, label

θ, ϕ, ψ an array of learnable parameters

Σ a covariance matrix Rc×c

eθ(·) an encoder network with a set of parameters θ in the autoencoder

dθ(·) a decoder network with a set of parameters θ in the autoencoder

p(x) evidence probability [0, 1]

p(z) prior of the latent variable

p(z | x) posterior

p(x | z) likelihood

N (µ, σ2) a normal distribution with mean µ and variance σ2

DKL(p || q) the Kullback–Leibler divergence between two

probability distributions p(·), q(·)
Nc(µ,Σ) the multivariate normal of a c dimensional random vector µ ∈ Rc

Ep(X) the expectation of a random variable X ∼ p(·)
∇x taking the gradient with respect to variable x

tr(A) the trace of matrix A
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Chapter 1

Introduction

Cancer is a group of diseases where abnormal cells bypass the apoptosis mechanism and prolifer-

ate to invade other normal tissues. Its heterogeneous nature exhibits on multiple granular levels,

from molecular alterations to clinical outcomes. The evolutionary process of cancer comprises

genetically distinct subclones across various sites and temporal molecular alterations in the tumor

cells[7]. Determining and tackling these heterogeneities with high precision become instrumental

in developing effective treatments since heterogeneities facilitate the progress of cancer resistance.

These inherent heterogeneities of cancer pose a challenge in developing a systematic classification

framework to categorize tumors with the appropriate abstraction based on their biological charac-

teristics. The goal of hierarchical classifications for different cancers is to provide a more accurate

diagnosis, predict the progression of the cancer subpopulations and improve prognosis along with

informed, effective treatments.

Cancers are most commonly classified by the primary site and the tissues where the first clus-

ter of tumor cells emerges i.e. histological types. An international standard has been established

for the nomenclature of cancer types (ICD-O) which serves as a multi-faceted classification of the

site, morphology and behavior. Beyond this standard, researchers have been actively investigating

meaningful subtypes within each cancer category, with the objective of facilitating the progno-

sis and treatment prediction for chemotherapy or radiation. For example, the intrinsic subtypes

(LumA, LumB, HER2-enriched and basal-like) of breast cancer have manifested their unique be-

haviours in the risk and survival analysis based on the PAM50 gene dataset[25]. Pan et al. [23]

identified several Copy Number Variations (CNVS) associated with specific breast cancer subtypes.

Moreover, they found that the expression of certain genes correlated with the occurrence of these

CNVS, validating the potential use of CNVS as powerful biomarkers to identify subtypes of breast
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cancer. While gene expression profiling by microarrays underpins the advancement of breast can-

cer subtyping, the whole genome sequence has been employed to stratify liver cancer effectively.

The genomic subtyping of liver cancers combined with genetic markers contributes to meaning-

ful Single Nucleotide Variant (SNV) subgroups that demonstrate evident discrepancies in terms of

patient survival duration[37].

However, instead of concentrating on identifying subtypes within individual cancer, we plan

to expand and explore the deep connection across distinct cancers through Pancancer analysis.

This holistic overview of genetic profiles across a spectrum of cancers gives us the opportunity to

identify common mutated drivers regardless of the primary site and tissue type. The Pancancer

Analysis of Whole Genome (PCAWG) project[1] calls for global collaboration on discovering sim-

ilar mutational patterns across cancers, aiming to generate a comprehensive cancer catalogue by

including donor clinical and histopathological data, subclonal reconstructions, purity and ploidy in-

formation, splice isoforms and mutational signatures. In 2020, The International Cancer Genome

Consortium (ICGC)[32] performed whole genome sequencing over more than 2000 primary tumors

and released the corresponding genetic data. Bulk RNA-sequencing data[5] provided by ICGC is

an extensive resource encoding cancer molecular profiles. It plays a significant role in revealing

commonly altered gene pathways across multiple tissue types that align with the goal of an unsu-

pervised learning task. Cancer cells originating from heterogeneous tissue types could conceivably

share a latent structure reflecting common features. A noticeable concern lies in the mixture of

dominating tissue effects from different cancers that arise from scaling from subtyping tasks in

single cancer to Pancancer classifications. It is often intractable to employ a direct unsupervised

learning approach on sequencing-based gene expression from heterogeneous cancers as the result-

ing clusters constantly reflect the tissue of origin, which camouflage other interesting, potentially

important, connections with peripheral signals. Our primary goal is to exclude the tissue-specific

gene expression signals from the dataset while preserving the latent structural effect.

Combining all these factors, we propose a novel PCVAE autoencoder model to mitigate dom-

inating tissue effect thereby allowing the model to cluster on latent structural effect. Ideally, the

autoencoder segment of the model will learn insightful low-dimensional representations that sum-

marize the connection among diverse types of cancers, whereas the label predictor segment extracts

the prominent tissue effect for each cancer type. The hope is that the low-dimensional encodings

from the bottleneck layer capture essential embeddings other than the known primary organs and

histological types due to the targeted bifurcation process. The latent connections can enrich our

understanding of the underlying mechanism of various types of tumors. Recent studies have found

a promising connection between genomic alterations such as CNV, SNV and gene expression inde-
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pendent of cancer tissue types. Likewise, our results are expected to unravel the link between gene

expression and some biological factor in the context of the pan-cancer relationship.

In this thesis, I divide the entire study into two major portions for clear structure. In the for-

mer part, we will formulate the question in a formal framework and define our objectives. Next,

we will investigate a few autoencoder network architectures with rigor and assess their ability to

disentangle the data with strong tissue effects via latent feature extraction. In the latter part, we

propose several models to eliminate the prominent tissue effects from the original samples. In par-

ticular, we will introduce a controlled variable to alleviate the tissue effects and integrate it with

variational autoencoder neural networks, leveraging the model’s performance under different ex-

perimental settings. Eventually, the resulting clusters will be analyzed by computing the entropy

respectively and visualized to evaluate the latent representation of the data. Biological significance

will be assessed by conducting a survival analysis[19] for all patients with attainable data.
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Chapter 2

Method

Complicated and unstructured data are ubiquitous in a wide array of disciplines, especially in the

current big data era[11]. The dataset provided by ICGC[32] falls into the category above as it

encodes a complete set of RNA molecules expressed by the cancerous cells (i.e. transcriptome).

To understand the given data in-depth, it is imperative to quest for a machine learning algorithm

that is capable of acquiring effective and disentangled latent representations, while simultaneously

preserving the intricate inter- and intra-cluster information. The ideal latent representations need

to be both semantically meaningful and statistically independent. Furthermore, we are allowed

to incept prior knowledge or extract certain properties from the architecture, which coerces the

target machine learning model to be flexible and scalable. In Section 2.1, we provide an exhaustive

discussion of the dataset we utilized. In Section 2.2, we introduce the definition of an autoencoder

and its variants, focusing on how to take advantage of these architectures to better solve the pre-

defined problem. The proposed novel models will be discussed in the last two sections.

2.1 ICGC Pancan Dataset
The dataset provided PCAWG consortium encompasses valuable embedding, which is a rich yet

unwieldy resource to comprehend complex cancer biology. Next-generation sequencing (NGS) is

a high-throughput sequencing technology that provides deep and massively parallel sequencing of

gene or gene expressions. Bulk RNA sequencing (RNA-seq) is a popular application of NGS which

enables the analysis of gene expression levels across cancer samples. It is a powerful technique

that enables the quantification of gene expression levels across the entire transcriptome, providing

a comprehensive view of the gene expression landscape. We select 6 different types of cancer from
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Figure 2.1: Donors distribution and mutated genes from the sampled ICGC dataset

separate primary locations in the ICGC data portal, specifically sequencing-based gene expression

data that was produced and examined using the NGS platform. In particular, this RNA-seq dataset

encodes dense, high-dimensional information across different types of cancer, yet it may incor-

porate multiple modalities which increases the difficulty to interpret. In the table, there are 2662

donors with available data type (EXP-S) which constitute the example entries in the dataset. To

eliminate the potential regional bias and batch effect, we choose the projects offered by the United

States only. In addition, we deliberately choose two subtypes of lung cancer where adenocarcinoma

develops in an organ or gland, yet squamous cell carcinoma originates in the squamous epithelium.

This choice is designed for examining to what extent can the model disentangle data in the latent

space. In Figure 2.1, the orange portions indicate lung adenocarcinoma and lung squamous cell

carcinoma. The purple rim represents brain cancer. The pink pie stands for breast cancer and the

light blue and dark blue represent ovary and liver cancer respectively.

As for gene features, there are 20502 distinct ones for each donor. We provide several options

in the code to select favoured features. For instance, we can perform a logarithmic transforma-

tion on the dataset to render it normal-like. Since we only manipulate raw-counts RNA-seq data

in the experiment, we need to normalize our data which counteracts the effect caused by varying

read depths. We can standardize the data feature-wise if necessary. With respect to feature selec-

tion, nanostring[12] and PAM50[25] gene features have been proven to demonstrate valuable

biological significance in a number of experiments. Besides, we can select top k gene features

with high variance and high mean absolute deviation by varmad. Aggregated gene features are

5



Table 2.1: Detail of the selected ICGC dataset

Code Name Site Donors EXP-S

BRCA-US Breast Cancer - TCGA, US Breast 1,093 1041

GBM-US Brain Glioblastoma Multiforme - TCGA, US Brain 595 159

OV-US Ovarian Serous Cystadenocarcinoma - TCGA, US Ovary 584 262

LUAD-US Lung Adenocarcinoma - TCGA, US Lung 518 478

LUSC-US Lung Squamous Cell Carcinoma - TCGA, US Lung 502 428

LIHC-US Liver Hepatocellular carcinoma - TCGA, US Liver 377 294

Total 3669 2662

a viable option in the dataset object as well. Notice that in the table, the data points are imbal-

anced across cancer categories. Therefore, we can select the same number of donors uniformly

at random for each cancer type. To visualize the data, we preliminarily invoke three dimension

reduction techniques, i.e. Principle Component Analysis (PCA), t-Distributed Stochastic Neighbor

Embedding (T-SNE) and Uniform Manifold Approximation and Projection for Dimension Reduc-

tion (UMAP). The results will be presented in the next chapter, so as the experiment’s configura-

tions. These dimension-reduction approaches will be adopted to visualize the bottleneck layer of

the autoencoder architecture (i.e. the latent representation).

2.2 Autoencoders
Autoencoders are a versatile family of neural networks that are trained to learn compressed rep-

resentations of input data by minimizing the difference between the original input and its recon-

structed output. Specifically, an autoencoder consists of an encoder and a decoder network, which

broadly undertakes the corresponding tasks:

• Encoder: A function e(·) maps the input data to low-dimensional latent representations.

• Decoder: A function d(·) aims to reconstruct latent representations from the embedding

back to the original input space.

Due to the non-linearity supported by the activation functions, these neural networks excel in tasks
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where linear methods such as Principle Component Analysis (PCA) or singular value decomposi-

tion are not sufficient to capture the underlying structure of the data. Substantial research have been

done by applying autoencoder for the Pancancer data in terms of clinical outcome[31], multi-omics

integration[40], somantic mutation[22] and gene expression[35] etc. which manifests the model’s

potential.

Figure 2.2: Schematic diagram of a standard autoencoder. In this example, the original
dataset and the reconstructed one both have 8 dimensions. The bottleneck layer has
3 dimensions represented by 3 purple nodes in the middle.

There are several variants of autoencoders, which we will introduce in the following sections.

Each type has its own specific architecture and training procedure, but all share the common goal

of learning compressed representations of input data with high fidelity while discarding irrelevant

or redundant information.

2.2.1 Vanilla Autoencoders

Mathematically, we assume any input dataset X has m examples and n features. A standard

autoencoder contains an encoder eθ1(·) and a decoder dθ2(·), which are parametrized by both se-

quences of neural networks with activation functions. These functions with reversed domain and
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codomain e : Rn → Rk, d : Rk → Rn where the parameters ⟨θ1, θ2⟩ are trained in a network

through backpropagation and optimization. Regarding the structure, the encoding layers and de-

coding layers denote the neural networks on the left-hand side and right-hand side in Figure 2.2.

The bottleneck layer in an autoencoder refers to the hidden layer in the neural network that learns

the latent representation of the input data. It is called a bottleneck layer because it often has the

least number of neurons compared to the input and output layers, thus creating a bottleneck in the

flow of information through the network. The dimension of the latent space is k which also stands

for the number of neurons in the bottleneck layer. To learn a compact representation of the input

data, an objective function has been established in a general form. It can be expressed as

L =
∑
x∈X

S(x, dθ2(eθ1(x))) (2.1)

where S denotes a measure of the distance between two vectors. L is considered as the loss

or objective function in machine learning which is required to be optimized during the training

process.

A detailed reference of mathematical notation that we adopt in this thesis can be found in

Chapter Mathematical Notation.

2.2.2 Variational Autoencoders

Deep generative models have been a heated research topic in the field and they have achieved monu-

mental accomplishments in producing realistic-looking data from which human cannot differentiate

(Deep Fakes)[29][21]. The past decade has witnessed a success in single-cell transcriptomics by

employing deep generative models (scVI)[20]. These models are a family of probabilistic graph-

ical models stemming from Bayesian inference, with the primary objective of generating samples

x̂ ∼ pθ(x) similar to the ones x ∼ pd∈D(x) from the distribution embedded in the training set

under a deep neural net framework. Alternatively, a deep generative model attempts to approxi-

mate the high-dimensional density in the observed dataset with certain assumptions imposed on

the latent manifold [29]. In general, deep generative models are designed to solve the following

optimization problem

min
m∈M

S(pm(x), pD(x))

where S is a measure of the distance between two probability distributions.

This model family consists of two essential elements, a generative phase and an inferential

phase[2]. As a generative model, it can capture the joint probability over the entire set of variables
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by generating new data instances from learnt, tractable hidden distribution, whereas the discrimi-

native model depicts the map only from observations to the predicted labels. It also enables us to

encode rich and complex information in the latent space and provide reasoning about the data in a

more sophisticated way than discriminative models trained by supervised methods[9]. In terms of

inference, deep generative models provide the opportunity to assess three fundamental queries i.e.

density estimation pθ(x), sampling x̂ ∼ pθ(x) and representation learning. We pay close attention

to the last query since it matches the interest of this thesis.

Figure 2.3: A schematic diagram of VAE and a graphical model representation [16]

The Variational Autoencoder (VAE) [16] is an important branch in the deep generative model

family with a wide array of applications in computer vision [10][39], and linguistics [3]. In the con-

text of Pancancer, biologically related latent space in cancer transcriptomes (RNA-seq data) from

ICGC have been extensively studied through VAE, as evidenced by Way and Greene [36]. Similarly,

VAE has been employeed for data integration on Pancancer dataset and heurstic design principles

were proposed and evaluated [30]. The structure of VAE has been delineated in Figure 2.3 where

the solid arrows represent the generative step and the dashed arrows imply the inferential step. In

VAE setting, the encoder is often regarded as a recognition model and the decoder stands for a gen-

erative model. The model inherits the merits from the structure of normal autoencoders, yet biases
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on learning the embedded distribution in the input and how it projects the input to the latent space.

In addition, this model can be regarded as a two-fold, independently parametrized architecture

including a decoder pϕ(xi | z) and an encoder qψ(z | xi). The encoder builds up an educated esti-

mation about the posterior on z and transfers it to the decoder in the forward pass, while updating

its parameters during learning iterations [17]. Considering the opposite direction, the decoder es-

tablishes a scaffolding for the encoder to learn meaningful representations. Therefore, the decoder

and encoder mutually benefit each other, which results in refining the latent features and generating

better samples [17]. In contrast to normal autoencoders, VAES incorporate the process of enforcing

the latent representations to be meaningful by minimizing the ‘statistical distance’ or ‘discrepan-

cies’ S between two distributions rooted in the model. Specifically, these two distributions are the

posterior learnt from the encoder and the prior pϕ(z). The exact prior can be computed by using

a series of fundamental probability rules such as Baye’s theorem and marginalization upon the

trained distribution pϕ(xi | z) from the decoder. Mathematically speaking, the Kullback-Leibler

divergence (KL DIVERGENCE) DKL(·||·) acts as a proxy for measuring how one probability distri-

bution differs from another via calculating the relative entropy represented in information for both

distributions. Note that this measure is not a metric since it is not symmetric in the sense that the

order of probability distributions does matter as arguments in KL DIVERGENCE. The motivation

behind VAES comes from a postulate on the mechanism of how data is produced in the physical

world. The postulate relies on the cycle of scientific methods where we hypothesize the theories

and verify the theories through observations [17]. Likewise, VAES delineate the input data by con-

structing an abstraction pϕ(x | z), i.e. the latent structure of the generating process, and perform

downstream inference subsequently.

In Appendix A, I will elaborate on the loss for VAES and provide a mathematical derivation

of Evidence Lower Bound (ELBO), which is a lower bound for log(p(xi)). Hence, the variational

lower bound for log marginal likelihood of a datapoint xi can be expressed as

L(xi, ψ, ϕ) = Eqψ(z|xi) [log(pϕ(xi|z))]−DKL(qψ(z|xi) || pϕ(z))

where the first component can be approximated by the reconstruction loss between the input and the

output and the second component represents the regularization via KL DIVERGENCE. In terms of

optimizing, we desire to maximize the evidence probability which means we can take the negative

of ELBO to obtain a loss for VAE. Canonically, we will perform Stochastic Gradient Descent

(SGD) on this objective function as an optimization criterion. Nevertheless, there is an issue that

arises from the backward pass when the gradient backpropagates through the sampling process
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ẑ ∼ pϕ(z|x) [17]. It is difficult to acquire an unbiased gradient estimator since the encoder itself is

a function of ψ.

∇ψL(xi, ψ, ϕ) = ∇ψEqψ(z|xi)
[
log

pϕ(xi, z)

qψ(z|xi)

]
̸= Eqψ(z|xi)

[
∇ψ log

pϕ(xi, z)

qψ(z|xi)

]
Now, the reparameterization trick comes into play and circumvents this issue [16][27]. The idea

is that we propose a differentiable function h to represent the random variable by transforming

another random variable ε which is easy to tackle and manipulate. This function can be written as

zi = h(ε, ψ, xi)

where the distribution of ε is totally independent from xi, ϕ. As a result, we are allowed to exchange

the position of expectation and gradient operator which yields

∇ψL(xi, ψ, ϕ) = ∇ψEqψ(z|xi)
[
log

pϕ(xi, z)

qψ(z|xi)

]
= ∇ψEp(ε)

[
log

pϕ(xi, z)

qψ(z|xi)

]
= Ep(ε)

[
∇ψ log

pϕ(xi, z)

qψ(z|xi)

]
≈ ∇ψ log

pϕ(xi, z)

qψ(z|xi)
.

In this case, we build up a simple Monte Carlo estimator for the ELBO which retains unbiasness. To

simplify the computation and obtain a closed form for ELBO, we invoke the Gaussian assumption

on the latent variables and we eventually achieve our VAE model customized for the given ICGC

dataset in the first stage. Another reason for using this assumption is that the input data is real-

valued which matches the support of the Gaussians. This assumption results in a posterior that takes

the form of a Gaussian distribution with diagonal covariance, allowing for the use of variational

inference to effectively approximate the true posterior distribution[30]. Here is a list of random
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variables that are inherent in our VAE model under the Gaussian assumptions.

ε ∼ N (0, Ik) (2.2)

z = h(ψ, ε, x) = µψ + σψ ⊙ ε (2.3)

qψ(zi | xi) = N (zi;µψ(xi), σ
2
ψ(xi)) (2.4)

pϕ(xi | zi) = N (xi;µϕ(zi), σ
2
ϕ(zi)) (2.5)

where µψ, log σψ are parameters learned from the encoder segment of the VAE model and ⊙ is

the notation for the element-wise product. To maximize the ELBO, we desire to minimize the loss

function which is proportional to the negative of ELBO. Overall, we denote B to be the batch of

samples generated from the encoder and the explicit form of the VAE loss function can be expressed

as

L = −1

2

k∑
t=1

(1 + log(σ2t (ψ, x))− σ2t (ψ, x)− µ2t (ψ, x))−
1

|B|
∑
b∈B

Eqψ(z|xi)[log pϕ(xi|zb)] (2.6)

and the minima of such loss function can be reached through multiple optimizers provided by the

machine learning framework. (full derivation is in Appendix A).

2.2.3 β-VAEs

Beta-VAE [15][4] is a modification of VAE framework that introduces an additional hyperparam-

eter, called beta, to the standard VAE objective function. The beta hyperparameter controls the

trade-off between the quality of the generated samples and the disentanglement of the learned la-

tent representation. The β-VAE objective can be written as

L(xi, z;ψ, ϕ, β) = Eqψ(z|xi) [log(pϕ(xi|z))]− βDKL(qψ(z|xi) || pϕ(z)) (2.7)

where β > 1 imposes a stronger constrain for the posterior qψ(z|x) to match the factorised Gaus-

sian prior p(z)[15]. Observed that this objective is equivalent to a standard VAE model when β = 1.

A refined β-VAE training objective has been proposed by Burgess et al. which can be expressed as

L(xi, z;ψ, ϕ, γ, C) = Eqψ(z|xi) [log(pϕ(xi|z))]− γ|DKL(qψ(z|xi) || pϕ(z))− C| (2.8)

where C increases gradually from zero to a value that is sufficient for decent reconstruction.

The disentanglement property refers to the ability of the autoencoder to learn a representation
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where each dimension of the latent space corresponds to a semantically meaningful feature of the

input data. For instance, in an image dataset, the latent dimensions could represent attributes such

as the pose, shape, and color of an object.

β-VAE encourages disentanglement by adding a penalty term to the VAE objective function,

which encourages each dimension of the latent space to be used for a separate and meaningful at-

tribute. Applying a higher coefficient for KL DIVERGENCE can result in a compromise between the

fidelity of the reconstructed data and the disentangled characteristics of the latent embeddings[4].

In general, the value of beta determines the strength of this penalty term, and a larger value of beta

results in a more disentangled latent space[15].

2.3 PCAE model

Figure 2.4: PCAE model. The dataset was preprocessed initially and fed into the autoencoder.
There are two possible positions of the predictor, one attached to the bottleneck layer and
the other one connected with the output layer. The final loss was evaluated as the sum of
MSEloss and CrossEntropyloss. The parameters were refined by backpropogation (in
the backward pass).
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To quantify and eradicate the tissue effect, we require an adaptive structure that can extract this

site information from the sequencing-based gene expression data. Intuitively, one possible solution

is to use a multi-class predictor to bifurcate the information flow and sift out the tissue effect. As

the diagram depicts above, we append the predictor to either the bottleneck layer or the end of the

decoding layers (ci is the tissue label for each patient xi). The final loss for our model will be the

combination of the reconstruction loss (between X and X̂) and the prediction loss (between c and

the ground truth i.e. Cross Entropy Loss[41]). By incorporating the loss of the predictor, there

exhibits a trade-off between the fidelity of reconstructions and the alignment between each patient

tumor sample and the corresponding primary site. Consequently, the proposed multi-class classifier

is able to effectively capture the tissue effect, which in turn relieves the autoencoder architecture

from this burden and allows it to focus on generating meaningful latent feature encodings indepen-

dent of primary sites. By isolating the tissue effect from the encoding process, this approach has

the potential to facilitate the identification of novel biological clusters.

2.4 PCVAE model
We propose a novel genre of PCVAE models which serves as a modification of the standard VAE

model. Due to the high flexibility and interpretability of VAE, we can incept a learnable parameter ν

in the VAE which controls the tissue effect. According to the current ICGC dataset we pick, there are

six cancers from distinct primary sites which implies that ν incorporates 6 rows in total. Regarding

a single row of ν, we initialized it as a standard normal vector with varying size which relies on the

position we insert ν in the VAE network. We speculate that this variable will extract the prominent

tissue signal from our dataset, which granted permission to cluster on the latent representations

with ν set to zero (frozen). In the first model, we place ν to the reparametrization process which

indicates the size of ν ought to match the dimension of the latent layer k.

νc ∼ N (0, Ik) (2.9)

ε ∼ N (0, Ik) (2.10)

z = h(ψ, ε, x) = νc + µψ + σψ ⊙ ε (2.11)

qψ(zi | xi) = N (zi;µψ(xi), σ
2
ψ(xi)) (2.12)

pϕ(xi | zi) = N (xi;µϕ(zi), σ
2
ϕ(zi)) (2.13)

Note that the subscript c denotes the numerical encoding of the corresponding primary site of a

patient xi. In particular, c represents the set containing sites such as Brain, Lung-AD, Lung-SC,
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Liver, Ovaries, Breast where the detail can be found in Table 2.1.

As for the second model, we attach ν to the last layer of the decoding layer which means the

size of ν has to adapt to the dimension of original data space n.

νc ∼ N (0, In) (2.14)

ε ∼ N (0, Ik) (2.15)

z = h(ψ, ε, x) = µψ + σψ ⊙ ε (2.16)

qψ(zi | xi) = N (zi;µψ(xi), σ
2
ψ(xi)) (2.17)

pϕ(xi | zi) = N (xi; νc + µϕ(zi), σ
2
ϕ(zi)) (2.18)

Notice that one advantage of the design choice for these models is that there is no post-

processing step required for visualizing the clusters. Since the encoding step is independent of

the effect of ν, we can encode the test data and run the clustering algorithms upon the output

without the cumbersome procedure to isolate ν from the latent embeddings.

We intend to discover the new clusters by clustering on the µ layer after the tissue effect re-

moval. In particular, we will employ a graph-based clustering algorithm called Leiden, which has

been shown to be highly effective in clustering large-scale networks[14][34]. The algorithm starts

by initializing each node as its own cluster. Subsequently, it iteratively merges clusters that lead to

a decrease in a quality function that measures the modularity of the network.
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Chapter 3

Result

To simplify the process of developing scalable machine learning models, we adopt Pytorch

which is a fully featured machine learning framework. The code used for this thesis is available

at https://github.com/Roth-Lab/PCVAE and all results are reproducible. In the first three sections,

we will show that variants of autoencoder structure can cluster according to the tissue labels effort-

lessly. In the last two sections, we verify if the tissue effect has been eliminated and evaluate the

novel clusters with the latent representations from the model which effectively extracts the tissue

signal.

3.1 Preliminary
We begin by attempting to cluster upon the raw dataset to ensure that the tissue signal is strong

enough. After we normalize the data for each patient, we visualize data directly by running UMAP

to reduce the dimension down to two. In Figure 3.1, we randomly select 150 patients in each

cancer type to balance the data for the first row of plots and the entire dataset for the second

row. Comparing the plots column-wise, it is evident that the more the number of examples, the

better quality of the clusters is in the experiment. Notice that the patients with Lung-AD and

Lung-SC displayed in the figure are intertwined with each other. A reasonable claim would be

the histological signal from cancers is not as prominent as the signal from the primary organ.

Based on the quality of the clusters, the tissue effect exhibits a moderately pronounced signal

dominance. This observation underscores the importance and necessity of developing a machine-

learning model for processing this signal.
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Figure 3.1: Preliminary visualization of the dataset

3.2 Autoencoder
In the normal autoencoder setting, we configure the layers’ dimension as [20501, 2048, 1024, 256, 16,

256, 1024, 2048, 20501]. During training, we split the data randomly into a training set and a vali-

dation set. The loss on the validation set (validation error) determines whether the model saves the

current parameters. In the experiment, we aim to compare the performance of various optimizers

and determine which one may contribute to the fast and robust convergence of clusters. As for the

left-most plot in Figure 3.2, the optimizer invoked is Adam with a learning rate 1e-3 and weight de-

cay 1e-5. We apply the SGD optimizer with momentum set to 0.9 for the middle plot. An addition

Nesterov momentum for SGD is imposed on a standard SGD for the right-most figure. The batch

size is the length of the entire training dataset to achieve a complete gradient. We set the number of

epochs to 20000. In the visualization after UMAP, there is a clear discrepancy between the quality

of clusters with latent features optimized by Adam and features optimized by other gradient-based

optimizations. We obtain two significant observations from this figure. Firstly, a standard autoen-

coder can produce good clustering on the tissue effect. The second one is that Adam optimizer

outperforms other optimizers in the current experiment configuration. For the sake of simplicity

and efficiency, we only adopt Adam optimizer in the following autoencoder architectures.

3.3 VAE
Moving on towards VAE, we tune the hyperparameters carefully to achieve evident clustering re-

sults. By ensuring the quality of clusters that correspond to tissue effects in the bottleneck layer
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Figure 3.2: Visualization of the latent layer of vanilla autoencoder using distinct optimizers

Figure 3.3: Visualization of the bottleneck layer of VAE

with the current configuration, the groundwork is laid for the proposed model to effectively remove

the tissue signal. The optimizer has the same configuration as the Adam in the previous section.

The dimensions for the hidden layers are assigned with [1024, 512] in the encoder and [512, 1024]

for the symmetric purpose. In terms of initialization, we deploy Xavier initialization[13] to avoid

local minima in the objective function. To prevent possible overfitting of the training data, we incor-

porate the early stopping mechanism where the training process will be terminated if the validation

error does not improve up to a number of iterations (i.e. patience). We also add Dropout layer

in the neural networks for a similar purpose. In the following analysis, we visualize the µψ from
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equation (2.3) instead of the latent reparametrization z to further mitigate the noise incurred by

the variance. As for the preprocessing, we normalize and log-transform the dataset. The features

that we select are the top 2000 under varmad criterion and union with nanostring and PAM50

where the detail can be referred in Chapter 2. The resulting clusters in Figure 3.3 demonstrate clear

dominating tissue effects which indicate that such effects have been preserved and refined in this

architecture.

In the β-VAE model, the β coefficient plays a significant role in terms of enforcing the latent

space to be more disentangled. In the experiment, we set β = 100 and achieve the following

clustering results illustrated in Figure 3.4. Observed from the UMAP plot, the cohesion for each

cluster largely increases comparing the plot generated from the VAE model. This observation from

the experiment validates that an appropriate β can result in more disentangled characteristics of the

latent embeddings.

Figure 3.4: Visualization of the bottleneck layer of beta VAE

3.4 PCAE
Before this experiment, we first establish a promising multi-class predictor with the following

configuration. The structure of the predictor can be expressed as [20501, 7000, 2048, 512] with

ReLU as the activation function. This predictor can achieve 99% accuracy during the testing phase.

We perform two experiments depending on the position of the classifier (i.e a specific layer in the

autoencoder where we retrieve the data). See Figure 2.4. The plot a in Figure 3.5 corresponds to
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Figure 3.5: Visualization of the bottleneck layer of the PCAE model using UMAP. The au-
toencoder structure inherits the most performant setting from the preliminary analysis.
Visualization was created on the standardized and normalized dataset with aggregated
gene features. The dimension of the autoencoder is [2443, 512, 256, 32, 256, 512, 2443]
and the shape of predictor is [32, 16, 8] in a and [2443, 256, 16] in b.

the model with predictor in solid lines. In this scenario, the predictor inputs the value produced

from the bottleneck layer of the standard autoencoder. On the other hand, the predictor takes the

output of the reconstructed X which results in the plot b (the model with predictor in dotted lines

in Figure 2.4). Unfortunately, PCAE instead amplifies the tissue effect from heterogeneous cancers

which does not satisfy our expectations. One plausible explanation may be that the prediction loss

term in the objective function enhances the tissue effect in the latent space due to the additional

penalty.

3.5 PCVAE

Table 3.1: Experiment setup for PCVAE

Model Name Position of ν Beta

VAEb bottleneck layer during reparametrization No
VAEd after decoding layers No
betaVAEHb bottleneck layer during reparametrization Yes
betaVAEHd after decoding layers Yes
betaVAEBb bottleneck layer during reparametrization Yes*
betaVAEBd after decoding layers Yes*
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We inherit the hyperparameters in the previous sections, especially from section 3.3. In terms

of initialization, we utilize kaiming initialization for models based on beta VAE. In Table 3.1, the

model betaVAEB applies the objective function (2.8) while the model betaVAEH uses the objective

function (2.7). The asterisk in the beta column suggests that beta is equal to the value of γ in β-VAE

objective (2.8).

According to the visualization of the latent embeddings Figure 3.6, we see that the tissue signal

is diluted and extracted by ν reasonably well in a-b, e-f while the signal remains prominent in

the results in the middle row c-d. This implies that our betaVAEBb and betaVAEBd models do not

remove the tissue effect by incorporating ν. Thus, we shall run the clustering algorithm on the latent

representations provided by other models. During the training phase, the validation error drops

violently after 50-100 epochs so as the reconstruction loss and the KL DIVERGENCE, as shown in

Figure A.1. Note that the last column of plots refers to the VAE base model with the reduction

method set to ‘sum’. This explains the absurdly large loss compared to the first column since we

employ an average reduction method for the betaVAEB models in lieu of the ‘sum’ method.

Finally, we run the Leiden clustering algorithm[34] upon the latent µ, which encompasses

a minimal amount of tissue effect. In models VAEb and VAEd, the algorithm detects 12 new

clusters and uncovers 9 new clusters respectively. Meanwhile, the algorithm has identified 12 and

14 new clusters from models betaVAEHb and betaVAEHd respectively, see Figure 3.8. As this

study is exploratory in nature, there are no ground truth labels available for each data point in novel

clusters. Consequently, popular evaluation measures such as the Adjusted Rand Index (ARI) and

Normalized Mutual Information (NMI) cannot be applied to assess the quality of clustering. Instead,

we report the Silhouette score[28], the Calinski Harabasz score[6] and the Davies-Bouldin index[8]

to evaluate the internal validity of these novel clusters in Table 3.2. In terms of the assessment of

the clusters, betaVAEHb and betaVAEHd models produce clusters with the lowest Davies-Bouldin

index which means the intra-class similarity and inter-class differences are reasonably prominent.

These models also dominate under the evaluation of Calinski Harabasz measure which implies the

novel clusters are dense and well separated. During the survival analysis[19], we tackle the survival

time for each patient in days and new cluster arrays. In the Kaplan-Meier curve in Figure 3.10, we

see the patients’ survival rate within each novel cluster. This curve estimates the survival function

from data and shows the probability that the current cohort will survive up to t days.

Subsequently, the entropy H of each novel cluster i found from the Leiden algorithm can be

written as

Hi = −
∑
c

pic log(pic) (3.1)

21



Figure 3.6: Visualization of latent embeddings from PCVAE models. a,c,e correspond to the
models where ν is at the bottleneck layer while b,d,f refer to the model where ν locates
after the decoding layers. In a-b, there are no obvious clusters observed yet Brain tissue
effect still dominates in e-f.

where c is the tissue label. Note that pic stands for the proportion of the number of patients di-
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agnosed as c cancer within cluster i with respect to the total number of patients in cluster i. Ac-

cording to Figure 3.7, we conclude that the entropy of clusters from VAEb and VAEd models is

distributed relatively uniformly and sustains at around 1.0. This indicates the tissue signal spreads

evenly within clusters from VAE base PCVAE models while tissue signal varies moderately from

betaVAE base PCVAE models. Notice in subplots c,d, Cluster 11 from c has only 118 donors with

Liver cancer and Cluster 13 from d encompasses 56 donors with Liver cancer as well. To assess

the attributes of the novel clusters, we alternatively visualize the donors’ age for each cluster, see

Figure 3.9. The plot depicts that the median age of all clusters hovers around 60-70 years old.

The number of outliers within each batch of clusters constructed from different models exhibits

a notable divergence in age, both the age at diagnosis and age at last follow-up. However, the

spread of age and distribution is approximately the same across different clusters which indicates

age attribute shows a minimal batch effect.

In the resulting KM curves, we observe all the novel clusters follow a similar survival trend in

panel a,b. Cluster 1 in panel b exhibits high survival probability during timeline 500 to 2000, which

exemplifies that patients with Breast cancer in the US have a high survival rate. This is because

the number of Breast cancer patients (273) dominates in such cluster. In panels c,d, the curves are

more dispersed so that the donors in these clusters follow distinguishable survival trends. Notice

that cluster 10 in subplot c shows a notably diminished survival rate. Cluster 10 is constituted of

153 patients with Brain tumor, 2 patients with Liver tumor and 2 Lung-SC cancer patients. This

result matches the properties of brain cancer, which are highly aggressive and fast transition to

malignancy. According to subplot d, Cluster 7 demonstrates a relatively high survival rate in the

long tail. By scrutinizing such cluster, the number of Breast cancer patients dominates in terms of

tissue type. Hence, patients with breast cancer tend to have longer periods of survival, aligning with

the current knowledge of this cancer. Finally, we fit Cox’s proportional hazard regression model

with a L1 penalizer. The fitted coefficients with confidence interval are illustrated in Figure A.2.

By varying the value of the L1 penalizer, we obtained a branching plot for various clusters and

tissue types (coefficients v.s. L1 penalty), see Figure 3.11. Based on the control group c, the

clusters in a,b are similar since they all converge to 0.0 when L1 increases to approximately 0.1.

Nevertheless, the coefficients for Liver, Lung-AD and Lung-SC cancers converge at that identical

point. This strongly implies that Cluster 10 found from betaVAEHd model and Cluster 11,6,7

demonstrate equivalently pronounced signal intensity as Ovary, Brain and Breast cancers (for the

detail statistics of these special clusters, please refer to Table A.1).
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Figure 3.7: Entropy values for the novel clusters of donors from VAEb (a), VAEd (b), be-
taVAEHb (c), betaVAEHd (d) base PCVAE models.

Table 3.2: Evalution scores for novel clusters

Model Name Silhouette score Calinski Harabasz score Davies-Bouldin index

VAEb −0.06074 7.95771 9.45565
VAEd −0.05967 5.46833 11.59724
betaVAEHb −0.04762 65.90446 7.55795
betaVAEHd −0.07778 54.78236 7.70724
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Figure 3.8: Novel clusters found from models with position b (a. VAEb, b. betaVAEHb) and
position d (c. VAEd, d. betaVAEHd) by executing Leiden clustering algorithm upon the
latent embeddings. By observation, the quality of the clusters found in PCVAE models
with betaVAE base is better (more cohesive) than the clusters identified in models with
vanilla VAE architecture.
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Figure 3.9: The box plot of donors’ age at diagnosis and age at last follow-up for the novel
clusters of donors from VAEb (a), VAEd (b), betaVAEHb (c), betaVAEHd (d) base
PCVAE models.
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Figure 3.10: The Kaplan-Meier curves for the novel clusters of donors from VAEb (a), VAEd
(b), betaVAEHb (c), betaVAEHd (d) base PCVAE models.

27



Figure 3.11: The coefficients versus L1 penalty generated by Python package lifelines
from Penalised Cox-proportional hazards model. Clusters in the legend align with the
ones detected respectively from VAEb (a), VAEd (b), betaVAEHb (d), betaVAEHd
(e) base PCVAE models. X-axis indicates L1 penalization and y-axis represents the
coefficient size. Fitted for 40 values of L1 lambda. Notably, panel c is a baseline of
tissue covariate and markers are in a diamond shape.
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Chapter 4

Conclusion

The problem we attempt to resolve is investigating the in-depth connections amongst heterogeneous

cancers while controlling the dominant tissue effect. In the method section, we first verify that the

signal is pronounced and difficult to eliminate. Next, we construct different autoencoder archi-

tectures to concentrate the genetic information from the high-dimensional space via latent feature

extraction. In particular, we ensure that the signal persists with the latent representations for these

base models. Ideally, the prominent tissue effect along with other signals that we are interested

are indistinguishably encoded in the latent space through autoencoder variations. According to the

visualization of the latent representations, we conclude that the signal of tissue remains dominant

with the proper configurations and hyperparameters of the model. This validates the effectiveness

of autoencoders and provides opportunities to extract and eradicate the tissue-related effect. By

comparing the UMAP plots Figure 3.2, we observe that Adam optimizer displays proficiency in

achieving rapid loss convergence and generating cohesive clusters. In addition, we conclude that

a larger β coefficient yields a more disentangled space illustrated by Figure 3.3 and Figure 3.4. In

terms of the PCAE model, the tissue effect has been reinforced instead of being mitigated in the

latent space. We postulate this is caused by the regulation imposed by the cross entropy loss as-

sociated with the predictor. The tissue information is further condensed in the latent space instead

of capturing such effect by the predictor. Due to the flexibility and high interpretability of VAE

model, the PCVAE models demonstrate competence in eliminating the tissue effect by introducing

a control variable ν. The location where we incept ν in the model does not affect the clustering

much while the form of objective functions does. Both PCVAE models, which utilize a VAE base

and a betaVAEH base, exhibit significant efficacy in eliminating the tissue signal. betaVAEH mod-

els produce high-quality novel clusters according to Calinski Harabasz score and Davies-Bouldin
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index. Overall, among all measures, betaVAEHb outperforms other models in terms of internal

index criteria. In terms of entropy, the models with VAE base exterminate the tissue signal more

thoroughly than the ones with the betaVAE base. We also conclude that Cluster 10 found from the

betaVAEHd model and Cluster 11,6,7 exhibit equivalently signal intensity as Overay, Brain and

Breast cancers underpinned by the Cox’s proportional hazards model.
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Chapter 5

Discussion

While in this thesis we only investigate a standard normal prior for VAE, there are a number of more

sophisticated posteriors or priors that satisfy a variety of objectives. Specifically, Dilokthanakul

et al. proposed a VAE model with a mixture of Gaussians prior to result in better disentanglement

in the latent space, which has been implemented and improved by estimating the prior with a

mixture of posteriors in a subsequent study[33]. This technique has been successfully deployed

on single cell ATAC-SEQ RNA sequencing data[38]. On the other hand, there exist methodologies

for devising adaptable posterior distributions that have gained significant popularity. They are

also categorized within the family of deep generative model, comprising normalizing flows[26],

auto-regressive flows[24][39] and an inverse version[18]. In addition, there are other variants of

integrative VAES such as Mix-Modal VAE and Hierarchical VAE that have been utilized in the

integration of heterogeneous cancer data types (multi-omics analysis)[30]. Nevertheless, these

variants place weights on the refined orchestration amongst various VAE architectures instead of

improving individual ones. Another observation is that the effectiveness of VAE model can be

severely affected by the minor perturbation of the parameters. This inspires us to attempt multiple

initialization strategies before the training stage of the PCVAE models and select the parameters

that lead to the highest ELBO value.

An immediate continuation of the current work presented is incorporating the entire RNA-seq

data from all available cancer types in ICGC portal and checking if the novel clusters and the as-

sessment scores (Silhouette score and the Variance Ratio Criterion) alter. Moreover, inspired by

transfer learning [42], we could extend and generalize our model in the future by feeding cancer

data with heterogeneous types to our model (i.e. CNV, somatic mutation data, DNA methylation,

structural somatic mutations, protein expression, etc). Alternatively, the model can be trained as a
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time series where we train the model with the initial type of data and use another type of data to

feed the pre-trained model sequentially so on and forth. If the training data encompasses a compre-

hensive range of cancer-related aspects, the resulting model has the potential to effectively extract

tissue effects on multiple granular levels, thereby enhancing its competence as a target effect ex-

tractor. According to the central dogma, genetic information will only flow in the direction from

DNA, to RNA, to protein. Therefore, a compact dataset incorporating all these genetic expressions

is likely to form a complete gene feature signal extractor since these molecules above encrypt the

entire human genome information. Assuming that a generalized tissue effect filter can be estab-

lished for any genetic profile, it will provide a fertile field for cancer research and may eventually

unravel a deeper connection among heterogeneous cancers. It is worth noting that the tissue effect

can be extended beyond primary sites to any semantically meaningful biomarker or biological ef-

fect. The survival analysis of patients could be inaccurate since the bulk RNA-seq data for each

patient incorporates several confounding factors including batch effect. To analyze the biological

significance of each cluster, it is vital to devise a controlled experiment to monitor cancer’s status

at a molecular scale.
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Appendix A

Supplementary Materials

A.1 KL DIVERGENCE and its properties
Let’s define the Kullback-Leibler divergence (KL DIVERGENCE) formally. Given two probability

distributions p, q defined on the same sample space X ,

DKL(p(x) || q(x)) =
∑
x∈X

p(x) log

(
p(x)

q(x)

)

if p, q are discrete and

DKL(p(x) || q(x)) =
∫
X
p(x) log

(
p(x)

q(x)

)
dx

if p, q are continuous.

First, KL DIVERGENCE is not a symmetric measure. This is straight-forward to show. Let’s

equate DKL(p(x) || q(x)) with DKL(q(x) || p(x)) and we obtain

p(x)(log p(x)− log q(x)) = −q(x)(log p(x)− log q(x))

in either scenarios above. Based on the axiom of probability measure 0 ≤ p(x) ≤ 1, we have

shown that this is not a symmetric measure unless p = q.

Second, KL DIVERGENCE is always non-negative. Gibbs inequality is a direct proof for this
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lemma. Here, we employ Jensen’s inequality to do a quick proof.

DKL(p(x) || q(x)) = Ep
[
log

(
p(x)

q(x)

)]
(A.1)

= Ep
[
− log

(
q(x)

p(x)

)]
(A.2)

≥ − log

(
Ep

[
q(x)

p(x)

])
(A.3)

≥ 0 (A.4)

Equation (A.3) is the Jensen’s inequality and we use a fact that f(x) = − log(x) is a convex

function.

A.2 Derivation of ELBO

Provided the second property in A.2, we evaluate the following KL DIVERGENCE. In this context,

we assume that both distributions p, q are continuous.

DKL(qψ(z | x) || pϕ(z | x)) = −
∫
qψ(z | x) log

pϕ(z | x)
qψ(z | x)

dz (A.5)

= −
∫
qψ(z | x) log

pϕ(x | z)pϕ(z)
qψ(z | x)pϕ(x)

dz (A.6)

= −
∫
qψ(z | x) log

pϕ(x | z)pϕ(z)
qψ(z | x)

dz +

∫
qψ(z | x) log pϕ(x)dz

(A.7)

= −
∫
qψ(z | x) log

pϕ(x | z)pϕ(z)
qψ(z | x)

dz + log pϕ(x)

∫
qψ(z | x)dz

(A.8)

= −
∫
qψ(z | x) log

pϕ(x | z)pϕ(z)
qψ(z | x)

dz + log pϕ(x) (A.9)

≥ 0 (A.10)
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Equation (A.6) holds because of Baye’s rule and (A.9) is the non-negative property of KL DIVERGENCE.

After rearranging the terms, we arrive at the ELBO in the following form.

log pϕ(x) ≥
∫
qψ(z | x) log

pϕ(x | z)pϕ(z)
qψ(z | x)

dz (A.11)

= Eqψ(z|x)
[
log

pϕ(x, z)

qψ(z | x)

]
(A.12)

= −
∫
qψ(z | x) log

qψ(z | x)
pϕ(z)

dz +

∫
qψ(z | x) log pϕ(x | z)dz (A.13)

= Eqψ(z|x) [log(pϕ(x | z))]−DKL(qψ(z | x) || pϕ(z)) (A.14)

= L(x, ψ, ϕ) (A.15)

Notice that expressions (A.12) and (A.14) are essentially ELBO in different forms.

A.3 KL DIVERGENCE of Gaussians
Let’s consider the general case where we want to compute the KL DIVERGENCE of two multivariate

gaussians

p(x) = Nk(x;µ,Σ), q(x) = N (x;0, Ik).

In the explicit form, the multivariate Gaussian distribution has the following density p(x)

p(x) =
1

(2π)k/2[det(Σ)]1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
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if the symmetric covariance matrix Σ is positive definite.

According to the expectation form (A.1) of KL DIVERGENCE, we can write it as

DKL(p(x) || q(x)) = Ep [log p(x)− log q(x)] (A.16)

=
1

2
Ep

[
− log detΣ− (x− µ)TΣ−1(x− µ) + xTx

]
(A.17)

= −1

2
log detΣ+

1

2
Ep

[
−(x− µ)TΣ−1(x− µ) + xTx

]
(A.18)

= −1

2
log detΣ+

1

2
Ep

[
−tr((x− µ)TΣ−1(x− µ)) + tr(xTx)

]
(A.19)

= −1

2
log detΣ+

1

2
Ep

[
−tr(Σ−1(x− µ)(x− µ)T ) + tr(xxT )

]
(A.20)

= −1

2
log detΣ− k

2
+

1

2
Ep

[
tr(xxT )

]
(A.21)

= −1

2
log detΣ− k

2
+

1

2
Ep

[
tr((x− µ)(x− µ)T + xµT + µxT − µµT )

]
(A.22)

= −1

2
log detΣ− k

2
+

1

2
tr(Σ+ 2µµT − µµT ) (A.23)

= −1

2
log detΣ− 1

2
k +

1

2
tr(Σ) +

1

2
µTµ (A.24)

Note that the trace of a value in R remains the same value (the identity map). Here, I take advantage

of the property of trace for the quadratic form where we can commute matrices within the trace

and it will generate the identical outcome, i.e.

tr(AB) = tr(BA)

holds for any matrices A,B. Another fact I use is derived from the linearity of expectation. The

trace operator and the expectation operator are exchangeable, i.e.

tr(E(A)) = E(tr(A))

for an arbitrary matrix A comprised of random variables. A possible proof provided online.

In the Section 2.2.2, we select the encoder to be simple factorized Gaussian [17]. Hence, the co-

variance matrix becomes diagonal Σ = diag(σ21, . . . , σ
2
k). Therefore, we derive the KL DIVERGENCE
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written in that section.

DKL(p(x) || q(x)) = −1

2
log detΣ− 1

2
k +

1

2
tr(Σ) +

1

2
µTµ (A.25)

= −1

2
log

k∏
i=1

σ2i −
1

2
k +

1

2

k∑
i=1

σ2i +
1

2
µTµ (A.26)

= −1

2

k∑
t=1

(1 + log(σ2t (ψ, x))− σ2t (ψ, x)− µ2t (ψ, x)) (A.27)

A.4 Plots and table

Figure A.1: Trace plots of loss evaluated from PCVAE models with VAEb (c), VAEd (d),
betaVAEHb (a), betaVAEHd (b) base.
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Figure A.2: A visual representation of the log hazard ratios, including their standard errors
and magnitudes. Using lifelines package, fitted coefficients are against Cox-
proportional harzards model with L1 penalty. Set penalizer=0.001. The error bar
represents the 95% confidence interval for each fitted coefficient within each category.
The cluster labels are represented as one-hot encoding matrix derived from PCVAE
models with VAEb (a), VAEd (b), betaVAEHb (d), betaVAEHd (e) base. The plot e
delineates the log hazard ratios against ground truth primary site labels, which acts as a
baseline.
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Table A.1: Count of some evident clusters and their primary site

Model Name Primary Site Cluster Count

betaVAEHb Brain Cluster10 153
betaVAEHb Lung-SC Cluster10 2
betaVAEHb Liver Cluster10 2
betaVAEHd Brain Cluster6 74
betaVAEHd Breast Cluster6 2
betaVAEHd Liver Cluster6 97
betaVAEHd Lung-AD Cluster6 4
betaVAEHd Lung-SC Cluster6 6
betaVAEHd Brain Cluster7 4
betaVAEHd Breast Cluster7 156
betaVAEHd Liver Cluster7 2
betaVAEHd Lung-AD Cluster7 11
betaVAEHd Ovaries Cluster7 4
betaVAEHd Brain Cluster11 63
betaVAEHd Breast Cluster11 7
betaVAEHd Liver Cluster11 34
betaVAEHd Lung-AD Cluster11 6
betaVAEHd Lung-SC Cluster11 11
betaVAEHd Ovaries Cluster11 1
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